
Reactive Programming with Vert.x

Embrace asynchronous to build responsive systems

Clement Escoffier
Principal Software Engineer, Red Hat

Reactive
The new gold rush ?

Reactive system, reactive manifesto,
reactive extension, reactive programming,
reactive Spring, reactive streams...

Scalability, Asynchronous, Back-Pressure,
Spreadsheet, Non-Blocking, Actor, Agent...

Reactive ?
Oxford dictionary

1 - Showing a response to a stimulus
 1.1 (Physiology) Showing an immune response to a specific antigen
 1.2 (of a disease or illness) caused by a reaction to something: ‘reactive
 depression’

2 - Acting in response to a situation rather than creating or controlling it

Reactive Architecture / Software
Application to software

A software showing responses to stimuli
● Events, Messages, Requests, Failures, Measures, Availability…
● The end of the flow of control ?

Is it new?
● Actors, Object-oriented programming…
● IOT, Streaming platform, complex event processing, event sourcing…

The 2+1* parts of the reactive spectrum

Reactive
A software showing
responses to stimuli

Reactive
Systems

Reactive
Programming

Akka, Vert.x Reactor, RX, Vert.x

Actor, Agent
Autonomic
Systems

Data flow,
Functional

programming

Eclipse Vert.x

Vert.x is a toolkit to build distributed and reactive systems
● Asynchronous Non-Blocking development model
● Simplified concurrency (event loop)
● Microservice, Web applications, IOT, API Gateway, high-volume event processing,

full-blown backend message bus

Eclipse Vert.x
Ecosystem

Build reactive systems
● Polyglot
● Integrable
● Embeddable
● Pragmatic
● Freedom

Modern software is not autonomous
Why my simple application is such a mess...

My
Application

Another
Service

Another
SoftwareAnother

SoftwareAnother
Software

Another
Service

Modern software is not autonomous
Remote interactions everywhere

My
Application

Another
Service

Another
SoftwareAnother

SoftwareAnother
Software

Another
Service

Need for responsiveness
In face of failures, under varying workload

My
Application

Another
Service

Another
SoftwareAnother

SoftwareAnother
Software

Another
Service

Reactive Systems => Responsive Systems

Reactive Manifesto
http://www.reactivemanifesto.org/

Reactive Systems are an architecture style focusing on responsiveness

http://www.reactivemanifesto.org/
http://www.reactivemanifesto.org/

Asynchronous message passing

Components interacts using messages

Send to an address Dispatch to components subscribed
to the address

Asynchronous message passing => Elasticity

Messages allows elasticity
Resilience is not only about failures, it’s also about self-healing

Send to an address

Dispatch to components subscribed
to the address

So, it’s simple, right ?
Distributed systems done right

My
Application

Another
Service

Another
SoftwareAnother

SoftwareAnother
Software

Another
Service

Pragmatic reactive systems
And that’s what Vert.x offers to you

Development model => Embrace asynchronous

Simplified concurrency => Event-loop, not thread-based

I/O
● Non-blocking I/O, if you can’t isolate
● HTTP, TCP, RPC => Virtual address
● Messaging

Asynchronous development
model

Asynchronous development models

Async programming
● Exists since the early days of computing
● Better usage of hardware resource, avoid blocking threads

Approaches
● Callbacks
● Future / Promise (single value, many read, single write)
● Data streams
● Data flow variables (cell)
● Continuation
● Co-Routines

Asynchronous development model
Callbacks

public int compute(int a, int b) {
 return ...;
}

public void compute(int a, int b,
 Handler<Integer> handler) {
 int i = ...;

handler.handle(i);
}

int res = compute(1, 2);

compute(1, 2, res -> {
 // Called with the result
});

Synchronous

Asynchronous

Asynchronous development model
Web server example

vertx.createHttpServer()
 .requestHandler(req ->
 req.response().end(Json.encode(list)))
 .listen(8080, hopefullySuccessful -> {
 if (hopefullySuccessful.succeeded()) {
 System.out.println("server started");
 } else {
 System.out.println("D'oh !");
 }
 });

Callbacks lead to ….
Reality check…. client.getConnection(conn -> {

 if (conn.failed()) {/* failure handling */}
 else {
 SQLConnection connection = conn.result();
 connection.query("SELECT * from PRODUCTS",
 rs -> {
 if (rs.failed()) {/* failure handling */}
 else {
 List<JsonArray> lines = rs.result().getResults();
 for (JsonArray l : lines) { System.out.println(new Product(l)); }
 connection.close(
 done -> {
 if (done.failed()) {/* failure handling */}
 });
 }
 });
 }
});

Reactive Programming

Reactive programming - let’s rewind….
Do we have Excel users in the room ?

My Expense Report

Lunch 15$

Coffee 25$

Drinks 45$

Total 85$

Reactive programming - let’s rewind….
Do we have Excel users in the room ?

My Expense Report

Lunch 15$

Coffee 25$

Drinks 45$

Total =sum(B2:B4)

Observe

Observables

My Expense Report

Lunch 15$

Coffee 0$

Drinks 0$

Total 15$

My Expense Report

Lunch 15$

Coffee 25$

Drinks 0$

Total 40$

My Expense Report

Lunch 15$

Coffee 25$

Drinks 45$

Total 85$

time

Reactive Programming
Observable and Subscriber

1 2 3 4

2 3 4 5

5 9

Reactive Extension - RX Java

Observable<Integer> obs1 = Observable.range(1, 10);

Observable<Integer> obs2 = obs1.map(i -> i + 1);

Observable<Integer> obs3 = obs2.window(2)
 .flatMap(MathObservable::sumInteger);

obs3.subscribe(
 i -> System.out.println("Computed " + i)
);

Reactive types

Observables
● Bounded or unbounded stream of values
● Data, Error, End of Stream

Singles
● Stream of one value
● Data, Error

Completables
● Stream without a value
● Completion, Error

observable.subscribe(
 val -> { /* new value */ },
 error -> { /* failure */ },
 () -> { /* end of data */ }
);

single.subscribe(
 val -> { /* the value */ },
 error -> { /* failure */ }
);

completable.subscribe(
 () -> { /* completed */ },
 error -> { /* failure */ }
);

Handling the asynchronous with reactive
programming

client.rxGetConnection()
 .flatMapObservable(conn ->
 conn
 .rxQueryStream("SELECT * from PRODUCTS")
 .flatMapObservable(SQLRowStream::toObservable)
 .doAfterTerminate(conn::close)
)
 .map(Product::new)
 .subscribe(System.out::println);

C

R

R R R

P P P

Unleash your superpowers
Vert.x + RX

Taming the asynchronous
Distributed systems done right

My
Application

Another
Service

Another
SoftwareAnother

SoftwareAnother
Software

Another
Service

Reactive Web Application
private void add(RoutingContext rc) {
 String name = rc.getBodyAsString();
 database.insert(name) // Single (async)
 .subscribe(
 () -> rc.response().setStatusCode(201).end(),
 rc::fail
);
}

private void list(RoutingContext rc) {
 HttpServerResponse response = rc.response().setChunked(true);
 database.retrieve() // Observable (async)
 .subscribe(
 p -> response.write(Json.encode(p) +" \n\n"),
 rc::fail,
 response::end);
}

App

Orchestrating remote interactions
Sequential composition

WebClient pricer = ...
HttpServerResponse response = rc.response().setChunked(true);
database.retrieve()
 .flatMapSingle(p ->
 webClient
 .get("/prices/" + p.getName())
 .rxSend()
 .map(HttpResponse::bodyAsJsonObject)
 .map(json -> p.setPrice(json.getDouble("price")))
)
 .subscribe(
 p -> response.write(Json.encode(p) + " \n\n"),
 rc::fail,
 response::end);

App

Another
Service

Push data using event bus bridges
Web Socket, SSE...

String name = rc.getBodyAsString().trim();
database.insert(name)
 .flatMap(...)
 .subscribe(
 p -> {
 String json = Json.encode(p);
 rc.response().setStatusCode(201).end(json);
 vertx.eventBus().publish("products", json);
 },
 rc::fail);

App

Another
Service

SockJS

Executing several operations concurrently

database.insert(name)
 .flatMap(p -> {
 Single<Product> price = getPriceForProduct(p);
 Single<Integer> audit = sendActionToAudit(p);
 return Single.zip(price, audit, (pr, a) -> pr);
 })
 .subscribe(
 p -> {
 String json = Json.encode(p);
 rc.response().setStatusCode(201).end(json);
 vertx.eventBus().publish("products", json);
 },
 rc::fail);

App

Another
Service

SockJS

Vert.x + RX

RX-ified API
● rx methods are returning Single
● ReadStream provides a toObservable method
● Use RX operator to combine, chain, orchestrate asynchronous operations
● Use RX reactive types to be notified on messages (Observable)

Follows Vert.x execution model
● Single-threaded, Event loop
● Provide a RX scheduler

What you can do with it
● Messaging (event bus), HTTP 1 & 2 client and server, TCP client and server, File system
● Async data access (JDBC, MongoDB, Redis…)

The path to better systems

Is Reactive Programming all you need ?

Reactive Programming
● Provides an elegant way to deal with asynchronous operation
● Vert.x provides an execution model (event loop) + the different network and utilities

bricks - all integrated with RX-apis

Other solutions
● Kotlin: Coroutine
● Java with Quasar: Continuation (vertx-sync)

It’s not enough !
● Reactive systems is not only about async
● Resilience + Elasticity => Responsive

All you need is (reactive) love

Reactive
Systems

Reactive
Programming

Don’t let a framework lead, you
are back in charge

clement.escoffier@redhat.com

@clementplop

@vertx_project

https://groups.google.com/forum/#!forum/vertx

https://developers.redhat.com/promotions/building-reactive-microservices-in-java

THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

