
Reactive Programming with Vert.x

Embrace asynchronous to build responsive systems

Clement Escoffier
Principal Software Engineer, Red Hat



Reactive
The new gold rush ?

Reactive system, reactive manifesto, 
reactive extension,  reactive programming, 
reactive Spring, reactive streams...

Scalability, Asynchronous, Back-Pressure, 
Spreadsheet, Non-Blocking, Actor, Agent...



Reactive ?
Oxford dictionary

1 -  Showing a response to a stimulus
 1.1 (Physiology) Showing an immune response to a specific antigen
 1.2 (of a disease or illness) caused by a reaction to something:   ‘reactive
 depression’

2 - Acting in response to a situation rather than creating or  controlling it



Reactive Architecture / Software
Application to software

A software showing responses to stimuli
● Events, Messages, Requests, Failures, Measures, Availability… 
● The end of the flow of control ?

Is it new?
● Actors, Object-oriented programming… 
● IOT, Streaming platform, complex event processing, event sourcing…



The 2+1* parts of the reactive spectrum

Reactive
A software showing 
responses to stimuli

Reactive
Systems

Reactive
Programming

Akka, Vert.x Reactor, RX, Vert.x

Actor, Agent
Autonomic 
Systems

Data flow,
Functional 

programming



Eclipse Vert.x

Vert.x is a toolkit to build distributed and reactive systems
● Asynchronous Non-Blocking development model
● Simplified concurrency (event loop)
● Microservice, Web applications, IOT, API Gateway, high-volume event processing, 

full-blown backend message bus



Eclipse Vert.x
Ecosystem

Build reactive systems
● Polyglot
● Integrable
● Embeddable
● Pragmatic
● Freedom



Modern software is not autonomous
Why my simple application is such a mess...
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Modern software is not autonomous
Remote interactions everywhere
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Need for responsiveness
In face of failures, under varying workload
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Reactive Systems => Responsive Systems



Reactive Manifesto
http://www.reactivemanifesto.org/

Reactive Systems are an architecture style focusing on responsiveness

http://www.reactivemanifesto.org/
http://www.reactivemanifesto.org/


Asynchronous message passing

Components interacts using messages

Send to an address Dispatch to components subscribed 
to the address



Asynchronous message passing => Elasticity

Messages allows elasticity
Resilience is not only about failures, it’s also about self-healing

Send to an address

Dispatch to components subscribed 
to the address



So, it’s simple, right ?
Distributed systems done right
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Pragmatic reactive systems
And that’s what Vert.x offers to you

Development model => Embrace asynchronous

Simplified concurrency => Event-loop, not thread-based

I/O
● Non-blocking I/O, if you can’t isolate
● HTTP, TCP, RPC => Virtual address
● Messaging



Asynchronous development 
model



Asynchronous development models

Async programming
● Exists since the early days of computing
● Better usage of hardware resource, avoid blocking threads

Approaches
● Callbacks
● Future / Promise (single value, many read, single write)
● Data streams
● Data flow variables (cell)
● Continuation
● Co-Routines



Asynchronous development model
Callbacks

public int compute(int a, int b) {
   return ...;
}

public void compute(int a, int b, 
   Handler<Integer> handler) {
   int i = ...;

handler.handle(i);
}

int res = compute(1, 2);

compute(1, 2, res -> {
   // Called with the result
});

Synchronous

Asynchronous



Asynchronous development model
Web server example

vertx.createHttpServer()
   .requestHandler(req ->
       req.response().end(Json.encode(list)))
   .listen(8080, hopefullySuccessful -> {
       if (hopefullySuccessful.succeeded()) {
           System.out.println("server started");
       } else {
           System.out.println("D'oh !");
       }
   });



Callbacks lead to ….
Reality check…. client.getConnection(conn -> {

   if (conn.failed()) {/* failure handling */}
   else {
       SQLConnection connection = conn.result();
       connection.query("SELECT * from PRODUCTS", 
           rs -> {
               if (rs.failed()) {/* failure handling */}
               else {
                   List<JsonArray> lines =    rs.result().getResults();
                   for (JsonArray l : lines) {  System.out.println(new Product(l)); }
                   connection.close(
                      done -> {
                       if (done.failed()) {/* failure handling */}
                  });
           }
       });
   }
});



Reactive Programming



Reactive programming - let’s rewind….
Do we have Excel users in the room ?

My Expense Report

Lunch 15$

Coffee 25$

Drinks 45$

Total 85$



Reactive programming - let’s rewind….
Do we have Excel users in the room ?

My Expense Report

Lunch 15$

Coffee 25$

Drinks 45$

Total =sum(B2:B4)

Observe



Observables

My Expense Report

Lunch 15$

Coffee 0$

Drinks 0$

Total 15$

My Expense Report

Lunch 15$

Coffee 25$

Drinks 0$

Total 40$

My Expense Report

Lunch 15$

Coffee 25$

Drinks 45$

Total 85$

time



Reactive Programming
Observable and Subscriber

1 2 3 4

2 3 4 5

5 9



Reactive Extension - RX Java

Observable<Integer> obs1 = Observable.range(1, 10);

Observable<Integer> obs2 = obs1.map(i -> i + 1);

Observable<Integer> obs3 = obs2.window(2)
   .flatMap(MathObservable::sumInteger);

obs3.subscribe(
   i -> System.out.println("Computed " + i)
);



Reactive types

Observables
● Bounded or unbounded stream of values
● Data, Error, End of Stream

Singles
● Stream of one value
● Data, Error

Completables
● Stream without a value
● Completion, Error

observable.subscribe(
   val -> { /* new value */ },
   error -> { /* failure */ },
   () -> { /* end of data */ }
);

single.subscribe(
   val -> { /* the value */ },
   error -> { /* failure */ }
);

completable.subscribe(
   () -> { /* completed */ },
   error -> { /* failure */ }
);



Handling the asynchronous with reactive 
programming

client.rxGetConnection()
 .flatMapObservable(conn ->
   conn
     .rxQueryStream("SELECT * from PRODUCTS")
     .flatMapObservable(SQLRowStream::toObservable)
     .doAfterTerminate(conn::close)
 )
 .map(Product::new)
 .subscribe(System.out::println);
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Unleash your superpowers
Vert.x + RX



Taming the asynchronous
Distributed systems done right
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Reactive Web Application
private void add(RoutingContext rc) {
   String name = rc.getBodyAsString();
   database.insert(name) // Single (async)
       .subscribe(
           () -> rc.response().setStatusCode(201).end(),
           rc::fail
       );
}

private void list(RoutingContext rc) {
   HttpServerResponse response = rc.response().setChunked(true);
   database.retrieve() // Observable (async)
       .subscribe(
           p -> response.write(Json.encode(p) +" \n\n"),
           rc::fail,
           response::end);
}

App



Orchestrating remote interactions
Sequential composition

WebClient pricer = ...
HttpServerResponse response = rc.response().setChunked(true);
database.retrieve()
   .flatMapSingle(p ->
       webClient
           .get("/prices/" + p.getName())
           .rxSend()
           .map(HttpResponse::bodyAsJsonObject)
           .map(json -> p.setPrice(json.getDouble("price")))
   )
   .subscribe(
       p -> response.write(Json.encode(p) + " \n\n"),
       rc::fail,
       response::end);

App

Another
Service



Push data using event bus bridges
Web Socket, SSE...

String name = rc.getBodyAsString().trim();
database.insert(name)
   .flatMap(...)
   .subscribe(
       p -> {
           String json = Json.encode(p);
           rc.response().setStatusCode(201).end(json);
           vertx.eventBus().publish("products", json);
       },
       rc::fail);

App

Another
Service

SockJS



Executing several operations concurrently

database.insert(name)
   .flatMap(p -> {
       Single<Product> price = getPriceForProduct(p);
       Single<Integer> audit = sendActionToAudit(p);
       return Single.zip(price, audit, (pr, a) -> pr);
   })
   .subscribe(
       p -> {
           String json = Json.encode(p);
           rc.response().setStatusCode(201).end(json);
           vertx.eventBus().publish("products", json);
       },
       rc::fail);

App

Another
Service

SockJS



Vert.x + RX

RX-ified API
● rx methods are returning Single
● ReadStream provides a toObservable method
● Use RX operator to combine, chain, orchestrate asynchronous operations
● Use RX reactive types to be notified on messages (Observable)

Follows Vert.x execution model
● Single-threaded, Event loop
● Provide a RX scheduler

What you can do with it
● Messaging (event bus), HTTP 1 & 2 client and server, TCP client and server, File system
● Async data access (JDBC, MongoDB, Redis…)



The path to better systems



Is Reactive Programming all you need ?

Reactive Programming
● Provides an elegant way to deal with asynchronous operation
● Vert.x provides an execution model (event loop) + the different network and utilities 

bricks - all integrated with RX-apis

Other solutions
● Kotlin: Coroutine
● Java with Quasar: Continuation (vertx-sync)

It’s not enough !
● Reactive systems is not only about async
● Resilience + Elasticity => Responsive



All you need is (reactive) love

Reactive
Systems

Reactive
Programming



Don’t let a framework lead, you
are back in charge

clement.escoffier@redhat.com

@clementplop

@vertx_project

https://groups.google.com/forum/#!forum/vertx

https://developers.redhat.com/promotions/building-reactive-microservices-in-java



THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews


